A Generalized Definition of Jacobian Matrix for Mechatronical Systems

نویسندگان

  • Hermes GIBERTI
  • Simone CINQUEMANI
  • Giovanni LEGNANI
چکیده

Manipulator kinetostatic performances are usually investigated considering only the geometrical structure of the robot, neglecting the effect of the drive system. In some circumstances this approach may leads to errors and mistakes. This may happen if the actuators are not identical to each other or when the employed transmission ratio are not identical and/or not constant. The paper introduces the so called “Generalized Jacobian Matrix” obtained identifying an appropriate matrix, generally diagonal, defined in order to: 1. properly weigh the different contributions of speed and force of each actuator. 2. describe the possible non-homogeneous behaviour of the drive system that depends on the configuration achieved by the robot. Theoretical analysis is supported by examples highlighting some of the most common mistakes done in the evaluation of a manipulator kinetostatic properties and how they can be avoided using the generalized jacobian matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsing in Real Time Simulation

Modelling of mechatronical systems often leads to large DAEs with stiff components. In real time simulation neither implicit nor explicit methods can cope with such systems in an efficient way: explicit methods have to employ too small steps and implicit methods have to solve too large systems of equations. A solution of this general problem is to using a method that allows manipulations of the...

متن کامل

Partition-Matrix Theory Applied to the Computation of Generalized-Inverses for MIMO Systems in Rayleigh Fading Channels

Partition-Matrix Theory and Generalized-Inverses are interesting topics explored in linear algebra and matrix computation. Partition-Matrix Theory is associated with the problem of properly partitioning a matrix into block matrices (i.e. an array of matrices), and is a matrix computation tool widely employed in several scientific-technological application areas. For instance, blockwise Toeplitz...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010